Abstract Title

In Susceptible Mice Infected with M. pulmonis, Host Lung Damage is Associated with Recruitment of IL-17A+ Lymphocytes and Neutrophils into the Lung

RAD Assignment Number

1406

Presenter Name

Maximillion T. Mize

Abstract

Background:

Possessing the smallest genomes, mycoplasma induce debilitating pneumonia in humans and animals resulting in chronic airway inflammation. Exacerbating previously acquired respiratory conditions (i.e. asthma), mycoplasma have evolved to resist antibiotics1-3. Current vaccines induce the same damage seen during actual infection. A proinflammatory cytokine contributing to chronic pathology and neutrophil-mediated host protection, IL-17A is secreted during infection with mycoplasma. Here, we investigate whether IL-17A can promote damage characteristic of mycoplasma disease. Our results will help development of vaccines that confer protection and lack side-effects.

Methods:

Murine pneumonia, induced by M. pulmonis, resembles the pulmonary pathogenesis seen in human mycoplasma diseases. Furthermore, BALB/c models have been well established for studying chronic respiratory mycoplasma infection4-6. Briefly, M. pulmonis was administered intra-nasally. At select time points post infection, mice were sacrificed and aspects of pulmonary pathogenesis analyzed.

Results:

Injecting neutralizing antibodies against IL-17A into BALB/c mice reduced inflammation during infection without influencing bacterial burden. Attenuating the effects of IL-17A reduced both airway cell numbers and total lung IL-17A+ lymphocytes by Day (14). The increase in IL-17A+ cells was associated with increased airway neutrophils, appearing as early as Day (1) post-infection with M. pulmonis. The presence of neutrophils appears alongside CD4+, CD8+, and γδ T-cells that secrete IL-17A early during infection. By Day (9) post-infection, the described T-cell populations are replaced by CD4+, SCA-1+, and NK cells that contribute to IL-17A levels. Although IL-17A production by CD4+ T-cells reaches its maximum response at Day (1) post-infection, this was the only T-cell population that persisted in their production of IL-17A by Day (14). Interesting, neutralizing the effect of IL-17A during early disease results in more severe inflammation when compared to both controls and animals starting treatment five days’ post-infection. The generation of IL-17A+ lymphocytes, and subsequent recruitment of neutrophils was associated with disease pathogenesis.

Conclusions:

During infection with M. pulmonis, neutrophil recruitment into the lungs is associated with the presence of IL-17A+ lymphocytes. Neutrophils and IL-17A+ cells drive host damage; neutralizing IL-17A reduces airway neutrophils, total IL-17A+ lung cells and host damage. Blocking IL-17A lowers lung lesion development, thus IL-17A and neutrophils promote respiratory damage. Surprisingly, blocking IL-17A during the innate response results in more severe inflammation when compared to neutralizing IL-17A once adaptive immunity takes over. Thus, IL-17A may have protective effects during the early phases of mycoplasma disease.

Presentation Type

Oral

This document is currently not available here.

Share

COinS
 

In Susceptible Mice Infected with M. pulmonis, Host Lung Damage is Associated with Recruitment of IL-17A+ Lymphocytes and Neutrophils into the Lung

Background:

Possessing the smallest genomes, mycoplasma induce debilitating pneumonia in humans and animals resulting in chronic airway inflammation. Exacerbating previously acquired respiratory conditions (i.e. asthma), mycoplasma have evolved to resist antibiotics1-3. Current vaccines induce the same damage seen during actual infection. A proinflammatory cytokine contributing to chronic pathology and neutrophil-mediated host protection, IL-17A is secreted during infection with mycoplasma. Here, we investigate whether IL-17A can promote damage characteristic of mycoplasma disease. Our results will help development of vaccines that confer protection and lack side-effects.

Methods:

Murine pneumonia, induced by M. pulmonis, resembles the pulmonary pathogenesis seen in human mycoplasma diseases. Furthermore, BALB/c models have been well established for studying chronic respiratory mycoplasma infection4-6. Briefly, M. pulmonis was administered intra-nasally. At select time points post infection, mice were sacrificed and aspects of pulmonary pathogenesis analyzed.

Results:

Injecting neutralizing antibodies against IL-17A into BALB/c mice reduced inflammation during infection without influencing bacterial burden. Attenuating the effects of IL-17A reduced both airway cell numbers and total lung IL-17A+ lymphocytes by Day (14). The increase in IL-17A+ cells was associated with increased airway neutrophils, appearing as early as Day (1) post-infection with M. pulmonis. The presence of neutrophils appears alongside CD4+, CD8+, and γδ T-cells that secrete IL-17A early during infection. By Day (9) post-infection, the described T-cell populations are replaced by CD4+, SCA-1+, and NK cells that contribute to IL-17A levels. Although IL-17A production by CD4+ T-cells reaches its maximum response at Day (1) post-infection, this was the only T-cell population that persisted in their production of IL-17A by Day (14). Interesting, neutralizing the effect of IL-17A during early disease results in more severe inflammation when compared to both controls and animals starting treatment five days’ post-infection. The generation of IL-17A+ lymphocytes, and subsequent recruitment of neutrophils was associated with disease pathogenesis.

Conclusions:

During infection with M. pulmonis, neutrophil recruitment into the lungs is associated with the presence of IL-17A+ lymphocytes. Neutrophils and IL-17A+ cells drive host damage; neutralizing IL-17A reduces airway neutrophils, total IL-17A+ lung cells and host damage. Blocking IL-17A lowers lung lesion development, thus IL-17A and neutrophils promote respiratory damage. Surprisingly, blocking IL-17A during the innate response results in more severe inflammation when compared to neutralizing IL-17A once adaptive immunity takes over. Thus, IL-17A may have protective effects during the early phases of mycoplasma disease.