Date of Award

11-1-2001

Degree Type

Restricted Access Dissertation

Degree Name

Doctor of Philosophy

Field of Study

Microbiology and Immunology

Department

Graduate School of Biomedical Sciences

First Advisor

Rafael Alvarez

Second Advisor

P. Matthew

Third Advisor

Ronald H. Goldfarb

Abstract

Chang, Woo-Jin, Automodification Reaction of PARP-1 Reversibly Regulates the DNA-Binding of NF-kB, Doctor of Philosophy (Microbiology and Immunology), November, 2001, 92 Pages, 20 figures, 3 schemes, and bibliography. Poly(ADP-ribose) polymerase (PARP-1, E.C. 2.4.2.30) is a constitutively expressed nuclear enzyme. It comprises about 1% of the total nuclear protein and in phylogenetically well conserved in most eukaryotes, with a notable exception in yeast. PARP-1 post transitionally modifies DNA-binding proteins by transferring the ADP-ribose moiety from BNAD+. Although the exact biological function of poly(ADP-ribosyl)ation has not been clearly elucidated, the process is thought to be involved in DNA repair, replication, and gene expression. Previous studies have indicated that PARP-1 participates in eukaryotic gene expression including the genes under the control of nuclear factor-kB (NF-kB). It has been demonstrated that PARP-1 deficient mice are more resistant to lipopolysaccharide-induced endotoxic shock than isogenic wild-type mice due to the inactivation of NP-kB in the mutants. In order to further analyze the interactions between PARP-1, NF-kB, and its consensus DNA in a cell-free system, we co-incubated recombinant PARP-1 protein and the p50-subunit of NF-kB (NF-kB-p50) in the absence of DNA strand-breaks. Electrophoretic mobility shift assays (EMSA) showed that sequence-specific DNA-binding of NF-kB-p50 was dependent on autopoly(ADP-ribosyl)ation of PARP-1. The NF-kB-p50 DNA-binding was inhibitied when PARP-1 was not auto-poly(ADP-ribosyl)ated either in the absence of BNAD+ or in the presence of 3-aminobenzamide, an enzymatic inhibitor of PARP-1. Coimmunoprecipation and immunoblot analysis demonstrated that NF-kB-p50 formed a heterodimer with PARP-1 when PARP-1 was not auto-poly(ADP-ribosyl)ated. In addition, poly(ADP-ribosyl)ation assays showed that NF-kB-p50 protein was not susceptible to poly(ADP-ribosyl)ation under normal incubation conditions. Those in vitro observations described above were confirmed by experiments utilizing HeLa nuclear extracts. EMSA showed that NF-kB DNA-binding was inhibited in 3-AB-pre-treated HeLa cells. To our knowledge, this is the first report demonstrating that auto-poly(ADP-ribosyl)ation reaction by PARP-1 reversibly regulates the function of a transcription factor by inhibiting the formation of heterodimer between PARP-1 and a transcription factor.

Comments

Chang, Woo-Jin, Automodification Reaction of PARP-1 Reversibly Regulates the DNA-Binding of NF-kB, Doctor of Philosophy (Microbiology and Immunology), November, 2001, 92 Pages, 20 figures, 3 schemes, and bibliography W 4 C456a 2001

Share

COinS