Date of Award

5-1-2007

Degree Type

Restricted Access Thesis

Degree Name

Master of Science

Field of Study

Pharmacology and Neuroscience

Department

Graduate School of Biomedical Sciences

First Advisor

Alakananda Basu

Second Advisor

Michael Forster

Third Advisor

Meharavan Singh

Abstract

Martin, Shelley E., Genetic Modulation of β-Amyloid Neurotoxicity and Protection by Nicotinic Agents. Master of Science (Pharmacology and Neuroscience), May, 2007, 53 pp., 7 figures, 2 tables, bibliography, 95 titles. Β-amyloid1-42 (Aβ42) has been implicated in the pathogenesis of Alzheimer’s disease (AD); however, the amount of this peptide in the brain does not correlate well with the presence or severity of AD. This project tested the hypothesis that individual differences exist in susceptibility to Aβ42 neurotoxicity arising from the differences in the expression of α7 nicotinic acetylcholine receptors α7 nACHRs). This hypothesis was tested in primary neuronal cultures derived from inbred mouse strains which differ in expression of α7 nAChRs. Also, the ability of nicotinic agents to modulate Aβ42 toxicity was examined. Significant strain differences in susceptibility to Aβ42 toxicity were found; however, these were not related to levels of α7 nAChRs. Additionally, strain differences were found in the ability of α7-selective partial agonist, an α7-selective antagonist and a α4β2 nAChR-selective antagonist to protect against this toxicity. Inbred strains of mice may be useful in uncovering the pathophysiology of AD.

Comments

Martin, Shelley E., Genetic Modulation of β-Amyloid Neurotoxicity and Protection by Nicotinic Agents. Master of Science (Pharmacology and Neuroscience), May, 2007, 53 pp., 7 figures, 2 tables, bibliography, 95 titles. W 4.5 M383G 2007

Share

COinS