ABSTRACT

Despite substantial chemotherapeutic advances in the 21st century, toxicity remains a prevailing obstacle to cancer treatment. Previously, the Lacko Lab has shown that scavenger receptor B1 (SR-B1) overexpression is a hallmark of several cancers. The natural ligand of this receptor is circulating HDL, whose wildtype action is the receptor-mediated delivery of cholesterol in an apolipoprotein A1-dependent manner (1). In this study, a dual P13K/mTOR inhibitor was incorporated into reconstituted high density lipoprotein (HDL) nanoparticles, and subsequently tested against a panel of glioblastoma multiforme (GBM) cell lines. The mean diameter of the nanoparticles were 15.7 nm with a standard deviation of 4.5 nm and a polydispersity index of 0.160. Drug concentration of 73.35 µM. These nanoparticles provided an appreciable protective effect against astrocytes while having an IC50 value of 103 nM against GBM line LN229.

RESULTS

PROPOSED MECHANISM

General Overview:

- Drug Incorporated nanoparticles are released/injected into cancer cells
- The nanoparticles bind to the SR-B1 receptor in an ApoA1-mediated mechanism
- Receptor mediated delivery of core components
- Via Trojan horse strategy, cell apoptosis is the expected response

DYNAMIC LIGHT SCATTERING

Particle size was measured via Dynamic Light Scattering with a Delta-NanoZ. Figure 1 displays the general shape and structure of the lipoprotein nanoparticles after they are constructed. Figure 2 displays the percentages of the different components that made up the nanoparticles that were created in this lab. These percentages were found via BCA/phospholipid/cholesterol assays.

PARTICLE SYNTHESIS

- XLogP3: 5.2
- "Dual ATP-competitive P13K and mTOR inhibitor (4)"

PARTICLE CHARACTERIZATION

- LN229 morphology
- A1-dependent

CYTOTOXICITY DATA

Survival Curve of GBM line LN229 against HDL

REFERENCES

ACKNOWLEDGEMENTS

We thank the staff of the Lipoprotein: Drug Delivery Lab at UNT Health Science Center and our sponsors the Peggy Dickerman Brain Cancer Foundation and the HBCU-STP grant by the Department of Defense Prostate Cancer Research Program DOD-PRP-PC151726 to Jambor K. Vishwanath, Ph.D.